
使用手機/平板掃描QR Code借閱前,請先下載/安裝 udn讀書館 App。
資料科學工具篇
第1章 進入資料科學的學習殿堂
1.1 認識資料科學
1.2 Google Colab:雲端的開發平台
1.3 Colab 的筆記功能
第2章 資料科學神器:Numpy 與Pandas
2.1 Numpy:高速運算的解決方案
2.2 Numpy 陣列建立
2.3 Numpy 陣列取值
2.4 Numpy 的陣列運算功能
2.5 Pandas:資料處理分析的強大工具
2.6 Series 的使用
2.7 DataFrame 的建立
2.8 Pandas DataFrame 資料取值
2.9 DataFrame 資料操作
第3章 資料收集:檔案存取與網路爬蟲
3.1 資料來源的取得
3.2 CSV 檔案的讀取
3.3 JSON 資料的讀取
3.4 Excel 試算表檔案的讀取
3.5 HTML 網頁資料讀取
3.6 儲存資料為檔案
3.7 認識網路爬蟲
3.8 requests 模組:讀取網站檔案
3.9 BeautifulSoup 模組:網頁解析
3.10 文字及檔案資料的收集
第4章 資訊圖表化:Matplotlib 與Seaborn
4.1 Matplotlib:資訊視覺化的核心工具
4.2 折線圖:plot
4.3 長條圖與橫條圖:bar、barh
4.4 圓形圖:pie
4.5 直方圖:hist
4.6 散佈圖:scatter
4.7 線箱圖:boxplot
4.8 設定圖表區:figure
4.9 在圖表區加入多張圖表:subplot、axes
4.10 Pandas 繪圖應用
4.11 Seaborn:更美觀的圖表工具
資料預處理篇
第5章 資料預處理:資料清洗及圖片增量
5.1 資料清洗處理
5.2 資料檢查
5.3 資料合併
5.4 樞紐分析表
5.5 圖片增量
第6章 資料預處理:標準化、資料轉換與特徵選擇
6.1 Scikit-Learn:機器學習的開發工具
6.2 數值資料標準化
6.3 非數值資料轉換
6.4 認識特徵選擇
6.5 使用Pandas 進行特徵選擇
6.6 使用Scikit-Learn 進行特徵選擇
機器學習篇
第7章 機器學習:非監督式學習
7.1 認識機器學習
7.2 K-means 演算法
7.3 DBSCAN 演算法
7.4 降維演算法
第8章 機器學習:監督式學習分類演算法
8.1 Scikit-Learn 資料集
8.2 K 近鄰演算法
8.3 單純貝氏演算法
8.4 決策樹演算法
8.5 隨機森林演算法
第9章 機器學習:監督式學習迴歸演算法
9.1 線性迴歸演算法
9.2 邏輯迴歸演算法
9.3 支持向量機演算法
深度學習篇
第10章 深度學習:深度神經網路(DNN)
10.1 認識深度學習
10.2 認識深度神經網路(DNN)
10.3 實作MNIST 手寫數字圖片辨識
10.4 Gradio 模組:深度學習成果展示
10.5 過擬合
第11章 深度學習:卷積神經網路(CNN)
11.1 認識卷積神經網路(CNN)
11.2 實作貓狗圖片辨識
第12章 深度學習:循環神經網路(RNN)
12.1 認識循環神經網路(RNN)
12.2 下載台灣股市資料
12.3 實作台灣股票市場股價預測
模型訓練進化篇
第13章 預訓練模型及遷移學習
13.1 預訓練模型
13.2 遷移學習
第14章 深度學習參數調校
14.1 hyperas 模組:參數調校神器
14.2 手寫數字辨識參數調校
第1章 進入資料科學的學習殿堂
1.1 認識資料科學
1.2 Google Colab:雲端的開發平台
1.3 Colab 的筆記功能
第2章 資料科學神器:Numpy 與Pandas
2.1 Numpy:高速運算的解決方案
2.2 Numpy 陣列建立
2.3 Numpy 陣列取值
2.4 Numpy 的陣列運算功能
2.5 Pandas:資料處理分析的強大工具
2.6 Series 的使用
2.7 DataFrame 的建立
2.8 Pandas DataFrame 資料取值
2.9 DataFrame 資料操作
第3章 資料收集:檔案存取與網路爬蟲
3.1 資料來源的取得
3.2 CSV 檔案的讀取
3.3 JSON 資料的讀取
3.4 Excel 試算表檔案的讀取
3.5 HTML 網頁資料讀取
3.6 儲存資料為檔案
3.7 認識網路爬蟲
3.8 requests 模組:讀取網站檔案
3.9 BeautifulSoup 模組:網頁解析
3.10 文字及檔案資料的收集
第4章 資訊圖表化:Matplotlib 與Seaborn
4.1 Matplotlib:資訊視覺化的核心工具
4.2 折線圖:plot
4.3 長條圖與橫條圖:bar、barh
4.4 圓形圖:pie
4.5 直方圖:hist
4.6 散佈圖:scatter
4.7 線箱圖:boxplot
4.8 設定圖表區:figure
4.9 在圖表區加入多張圖表:subplot、axes
4.10 Pandas 繪圖應用
4.11 Seaborn:更美觀的圖表工具
資料預處理篇
第5章 資料預處理:資料清洗及圖片增量
5.1 資料清洗處理
5.2 資料檢查
5.3 資料合併
5.4 樞紐分析表
5.5 圖片增量
第6章 資料預處理:標準化、資料轉換與特徵選擇
6.1 Scikit-Learn:機器學習的開發工具
6.2 數值資料標準化
6.3 非數值資料轉換
6.4 認識特徵選擇
6.5 使用Pandas 進行特徵選擇
6.6 使用Scikit-Learn 進行特徵選擇
機器學習篇
第7章 機器學習:非監督式學習
7.1 認識機器學習
7.2 K-means 演算法
7.3 DBSCAN 演算法
7.4 降維演算法
第8章 機器學習:監督式學習分類演算法
8.1 Scikit-Learn 資料集
8.2 K 近鄰演算法
8.3 單純貝氏演算法
8.4 決策樹演算法
8.5 隨機森林演算法
第9章 機器學習:監督式學習迴歸演算法
9.1 線性迴歸演算法
9.2 邏輯迴歸演算法
9.3 支持向量機演算法
深度學習篇
第10章 深度學習:深度神經網路(DNN)
10.1 認識深度學習
10.2 認識深度神經網路(DNN)
10.3 實作MNIST 手寫數字圖片辨識
10.4 Gradio 模組:深度學習成果展示
10.5 過擬合
第11章 深度學習:卷積神經網路(CNN)
11.1 認識卷積神經網路(CNN)
11.2 實作貓狗圖片辨識
第12章 深度學習:循環神經網路(RNN)
12.1 認識循環神經網路(RNN)
12.2 下載台灣股市資料
12.3 實作台灣股票市場股價預測
模型訓練進化篇
第13章 預訓練模型及遷移學習
13.1 預訓練模型
13.2 遷移學習
第14章 深度學習參數調校
14.1 hyperas 模組:參數調校神器
14.2 手寫數字辨識參數調校
